Описание

Гамма-обсерватория им. Комптона была названа так в честь лауреата Нобелевской премии по физике Артура Холли Комптона. Она была запущена 5 апреля 1991 года на борту космического челнока "Атлантис". Гамма-обсерватория создана для изучения Вселенной в гамма-лучах. С ее помощью впервые проводился обзор всего неба в гамма-лучах, а также наблюдения Солнца, квазаров, пульсаров, сверхновых звезд, черных дыр и гамма-всплесков. Орбита обсерватории располагалась в 384 км от поверхности Земли. Вследствие низости орбиты обсерватория постоянно испытывала действие со стороны атмосферы (сопротивление), поэтому несколько раз ее приходилось поднимать на более высокую орбиту. Спутник весил 17 тонн. Поднятые над атмосферой, приборы Комптона смогли исследовать самые высокоэнергичные процессы во Вселенной в диапазоне гамма-излучения, где каждый фотон несет энергию в 100000 раз и более превосходящую энергию видимого света. Срок работы гамма-обсерватории намного превзошел планировавшиеся 2–5 лет, но только отказ гироскопа, побудил NASA к завершению проекта и спуску аппарата в атмосферу. Научные результаты, полученные обсерваторией можно оценить уже по тому факту, что за время своей работы она обнаружила более 400 источников космического гамма-излучения — в 10 раз больше, чем было известно до ее запуска. Она также зарегистрировала более 2,5 тыс. гамма-всплесков, тогда как ранее было зафиксировано только около 300. Обсерватория была сведена с орбиты 4 июня 2001 года. Проработала 10 лет.

Обсерватория Комптон несла 4 основных инструмента, совместно покрывающих энергетический диапазон от 20 кэВ до 30 ГэВ.

  • Инструмент для исследования вспышечных и транзиентных событий Burst and Transient Source Experiment, (BATSE) произведенный в Космическом центре имени Маршалла (НАСА) был предназначен для обнаружения коротких всплесков (например, гамма всплесков), а также имел возможность проводить обзоры всего неба. Инструмент состоял из 8 идентичных модулей LAD (Large Area Detector), размещенных на углах обсерватории. Каждый модуль представлял собой кристалл NaI(Tl) диаметром 50,48 см и толщиной 1,257 см с рабочим энергетическим диапазоном 20 кэВ — 2 МэВ, и кристалл NaI диаметром 12,7 см толщиной 7,62 см с расширенным энергетическим диапазоном до 8 МэВ. Все кристаллы были окружены пластиковым сцинтиллятором, формировавшим антисовпадательную защиту детекторов от заряженных частиц космических лучей и заряженных частиц радиационных поясов Земли. Резкое увеличении скорости счета детекторов инициировало запись показаний детектора с увеличенным временным разрешением, что в дальнейшим позволяло анализировать кривые блеска всплесков. Типичная частота регистрации всплесков инструментом BATSE — примерно один в день.
  • Направленный сцинтилляционный спектрометр Oriented Scintillation Spectrometer Experiment, (OSSE), произведенный в Исследовательской лаборатории ВМФ США (англ. Naval Research Laboratory) регистрировал гамма лучи, попадающие в поле зрения спектрометра, ограниченное коллиматором размером 3,8° x 11,4° FWHM. Детекторы представляли собой толстые сцинтиляционные кристаллы NaI(Tl) диаметром 30,3 см и толщиной 10,2 см, оптически сопряженные с толстым кристаллом CsI(Na) толщиной 76,2 мм, работающими по принципу приборов фосвич (Phoswich), то есть с отделением быстрых (~0,25 мксек) событий, происошедших в кристалле NaI, от медленных (~1мксек), произошедших в кристалле CsI(Na). Таким образом кристалл CsI(Na) служил эффективой антисовпадательной защитой от событий, пришедших не через поле зрения инструмента. Также антисовпадательной защитой и служил кристалл CsI(Na) цилиндрической формы, окружающий центральный детектор с боковых сторон. Коллиматор из вольфрамовых пластин располагался в стакане из кристалла CsI(Na) антисовпадательной защиты. Четыре детектора инструмента работали попарно, попеременно чередуя наблюдения источника и фоновой площадки для лучшего учета инструментального фона детекторов.
  • Комптоновский телескоп Imaging Compton Telescope, (COMPTEL) произведенный в Институте внеземной физики общества им. Макса Планка, Университетом Нью-Хемпшира, Институтом космических исследований Нидерландов и Астрофизическим департаментом ЕКА был предназначен для определения направления прихода фотонов в диапазоне 0,75-30 МэВ с точностью около градуса. Поле зрения прибора составляло около одного стерадиана. Для регистрации реальных гамма фотонов прибору было необходимо срабатывание одновременно в двух сцинтилляторах, верхнем и нижнем. Гамма лучи, рассеянные на верхнем сцинтилляторе, оставив в нём энергию E1, поглощался в нижнем сцинтилляторе, оставляя в нём энергию E2. Зная эти две величины, E1 , E2, можно было определить полную энергию пришедшего гамма-кванта и угол Комптоновского рассеяния θ. Измеряя положения на детекторах, в которых были зарегистрированы события, инициированные пришедшим гамма-квантом, можно было определить кольцо направлений на небе, из которого пришло зарегистрированное событие. Ввиду требования практически строгого совпадения времен регистрации событий в двух детекторах (с задержкой всего в наносекунды) большая часть фоновых событий в детекторе эффективно подавлялась. Анализируя большое количество событий с информацией о «кольцах» прихода фотонов, можно было восстанавливать карту неба с угловым разрешением около одного градуса.
  • Гамма телескоп высоких энергий Energetic Gamma Ray Experiment Telescope, (EGRET) регистрировал гамма лучи в диапазоне от 20 МэВ до 30 ГэВ с угловым разрешением в доли градуса и энергетическим разрешением в 15 %. Прибор был разработан в Центре космических полетов имени Годдарда (США), Институте внеземной физики общества им. Макса Планка и Стэнфордском университете. Детектор работал на принципе регистрации электрон-позитронных пар, рождаемых при прохождении через объём детектора гамма лучей высоких энергий. В детекторе измерялись траектории вторичных электронов и позитронов и их полные энергии, что позволяло затем восстанавливать информацию о направлении пришедшего гамма-кванта и эго энергии.

 

NORAD ID/Int'l Code
21225/1991-027B
Ракета-носитель
Дата запуска/сведения/статус
1991-04-05/2000-06-04/
Производство
Группировка (серия)
Страна оператор/производитель
/
Оператор (владелец)
Стоимость
Срок активного существования
Масса
17000 кг
Масса сухая
Масса нагрузки
Габариты
Мощность
Тип (целевое назначение)
Обсерватория
Платформа
Разрешение
Полоса
Длины волн
Транспондеры
Пропускная способность
Емкость

Траектория

Динамика изменения апогея, км.

Динамика изменения перигея, км.

Динамика изменения наклонения, град.

Вероятность нахождения объекта внутри сферы радиусом r, км.

Сейчас

Вероятность нахождения объекта внутри сферы радиусом r, км.

Через сутки

Вероятность нахождения объекта внутри сферы радиусом r, км.

Через неделю