Ракета-носитель. H2A204. [Редактировать]

Дополнительная классификация

#Наименования
1Все ракеты-носители

Технические характеристики

#ХарактеристикаЗначение
1Стартовая масса, кг443000
2Масса ПН (ГПО), кг6000
31-ая ступень 1x1-ая ступень H2A
42-ая ступень 1x2-ая ступень H2A
50-ая ступень 4xРН H2A SRB-A
6Обтекатель 1xОбтекатель 5S

Экономические характеристики

#ХарактеристикаДата измеренияЗначение
1Страна Япония

Перечень запусков ракетаносителя

#Наименование Дата пуска Ракета-носитель Космодром АппаратыТип
12017-0472017-08-19H2A204ТанегасимаЯпонияЯпония1xQZS 3
Запуск
22017-0052017-01-24H2A204ТанегасимаЯпонияЯпония1xDSN 2
Запуск
32015-0722015-11-24H2A204ТанегасимаКанадаЕвропейский союз1xTelstar 12V
Запуск
42006-0592006-12-18H2A204ТанегасимаЯпонияЯпония1xKiku 8
Запуск

Надежность ракета-носителя



Найдено 18 документов по запросу «H2A204». [Перейти к поиску]


Дата загрузки: 2017-09-24
Скачать документ
Скачать текст
0.07/5
... Vehicle configuration ................................................................. 31 Figure 1.3-3 H-IIA (H2A204) Launch Vehicle configuration ................................................................. 32 Figure... mission Launch Capabilities (H2A202 and H2A204 with model 4S Fairing) ............................................................................................................................................................ 51... mission Launch Capabilities (H2A202 and H2A204 with model 5S Fairing) ............................................................................................................................................................ 51...-coast GTO mission Launch Capabilities (H2A204 with model 4S Fairing) ............. 53...-coast GTO mission Launch Capabilities (H2A204 with model 5S Fairing) ............. 53... parameters for Standard GTO mission (H2A204) Acceleration and Relative velocity ................................................................................................................................. 56... parameter for Standard GTO mission (H2A204) Altitude ...................... 56 Figure 2.3-13 Typical... trajectory for Standard GTO mission (H2A204) Altitude ~ Range ..... 57 Figure 2.3-14... trajectory for Standard GTO mission (H2A204) Latitude ~ Longitude ............................................................................................................................................................ 57 Figure 2.3-15... for Long-coast GTO mission (H2A204) Acceleration and Relative velocity (Lift... for Long-coast GTO mission (H2A204) Acceleration and Relative velocity (~3rd... for Long-coast GTO mission (H2A204) Altitude (Lift-off~SECO2) ............................................................................................................................... 62... for Long-coast GTO mission (H2A204) Altitude ~ Range (Lift-off~SECO2... for Long-coast GTO mission (H2A204) Altitude ~ Range (Lift-off~SECO3... for Long-coast GTO mission (H2A204) Latitude ~ Longitude ............................................................................................................................................................ 63 Figure 2.4-1 Launch... for SSO mission (H2A202 and H2A204 with Model 4S fairing) ......... 65... Model 4/4D upper fairing for H2A204 .............................................................................................................................................. 87 Figure 3.3-3 Typical internal surface... inside fairing with acoustic blanket (H2A204) .................................. 78 Table 3.2-5 Summary of pyrotechnic... as shown in Figure 1.3-2. The "H2A204" consists of the first stage... : Monolithic CFRP Diameter 2.5 m SRB-A (for H2A204) Propellant (per each) 53 4.0 : LE...-A (for H2A202) Propellant (per each) H2A204 (2) 4 : HTPB composite Propellant weight 66... 21 20 Figure 1.3-3 YET04001 H-IIA (H2A204) Launch Vehicle configuration 32 Ver... of second stage) H2A202 [s] Events H2A204 [s] Chapter 2 Guidance flight mode on... of second stage) H2A202 [s] Events H2A204 [s] Guidance flight mode on -18... and H2A204 with model 4S fairing: Figure 2.3-1 -H2A202 and H2A204 with model... fairing: Figure 2.3-4 -H2A204 with model 4S fairing: Figure 2.3-5 -H2A204 with model 5S...) : Figure 2.3-7~2.3-10 -Standard GTO mission (H2A204) : Figure 2.3-11~2.3-14 -Long-coast...~2.3-20 -Long-coast GTO mission (H2A204) : Figure 2.3-21~2.3-26 YET04001 50... mission Launch Capabilities (H2A202 and H2A204 with model 4S Fairing) Payload... mission Launch Capabilities (H2A202 and H2A204 with model 5S Fairing) 51...-coast GTO mission Launch Capabilities (H2A204 with model 4S Fairing) 7,000... 6,500 PCS=99% ha=20000km(*) H2A204, Standard GTO 6,000 Payload Mass...=60000km ha=80000km 5,000 4,500 H2A204, Long-coast GTO 4780kg 4,000...-coast GTO mission Launch Capabilities (H2A204 with model 5S Fairing) 53... parameters for Standard GTO mission (H2A204) Acceleration and Relative velocity 500... parameter for Standard GTO mission (H2A204) Altitude 56 Ver. 4.0 Performance 500... trajectory for Standard GTO mission (H2A204) Altitude ~ Range 50 40 SEIG1... trajectory for Standard GTO mission (H2A204) Latitude ~ Longitude 57 YET04001 Chapter... for Long-coast GTO mission (H2A204) Acceleration and Relative velocity (Lift... for Long-coast GTO mission (H2A204) Acceleration and Relative velocity (~3rd... for Long-coast GTO mission (H2A204) Altitude ~ Range (Lift-off~SECO2... for Long-coast GTO mission (H2A204) Altitude ~ Range (Lift-off~SECO3... for Long-coast GTO mission (H2A204) Latitude ~ Longitude 63 YET04001 Chapter... payload fairing for H2A202 and H2A204 respectively. This is the envelope... inside fairing with acoustic blanket (H2A204) Center Frequency (Hz) SPL (dB... Chapter 3 Pyrotechnic shock events H2A202 H2A204 Remarks SRB-A separation upper fairing... upper fairing for H2A202 and H2A204 mission. And Figure 3.3-3 shows typical.... temperature (℃) Section Emittance Chapter 3 H2A202 H2A204 Nose cap 140 160 0.15... Model 4/4D upper fairing for H2A204 87 YET04001 Chapter 3 Second nose...



Дата загрузки: 2017-12-10
Скачать документ
Скачать текст
0.13/5
The Development of H2A204 Ty p e a n d i t s S u c c e s s f u l Maiden Flight Courtesy Cour ... of H2A204 on December 18, 2006. This paper describes the H2A204 launch... demands for larger satellites, the H2A204 type, which is an additional.... (See Fig. 1 1) The development of H2A204 started in late 2001. Though... develop- 2. Development of H2A204 As stated above, the H2A204 has increased the... satellite into GTO. So the H2A204 configuration has been modified to... booster Type H2A202 H2A2022 H2A2024 H2A204 Launching capacity (GTO) 4.1 ton 4.5 ton... original SRB-A was developed for H2A204 to keep the flight dynamic... No. 7 before being used for H2A204 type. (4) Modification of ground support... launch site using the first H2A204 flight vehicle, and it was... performed their respective functions for H2A204, ensuring the validity of the... SRB-A mounting fittings of the H2A204 type 0.00e+00 Fig. 3 Example.... 3. Successful maiden flight of the H2A204 type Table 1 Results of ETS....6 the first vehicle of the H2A204 type was launched on December... 4. Conclusion The development of the H2A204 type, followed by its successful... H-IIA family, including this new H2A204 type, will enhance our satellite...



Дата загрузки: 2017-12-10
Скачать документ
Скачать текст
0.11/5
... Family Type H2A202 H2A2022 H2A2024 H2A204 Launch Capability About 3.8 tons About... Flight 9 H2A2024 Flight10 H2A202 Flight11 H2A204 ・First 204 type flight ・With... type family H2A202 H2A204 7 Renovated Items for the H2A204 Type Renovated items... the conventional SRB-A for the H2A204 type as a measure against the... (Measures against increasing plume heat) H2A204 Renovation of Ground Facilities ・Additional...



Дата загрузки: 2017-06-14
Скачать документ
Скачать текст
0.05/5
... verify its effect for the H2A204. LE-7A Engine (Regenerative cooling... area by jet in the H2A204 configuration [Development history] - Development was... SRB-A Radiation Convection In the H2A204 configuration, the first stage engine...



Дата загрузки: 2017-02-23
Скачать документ
Скачать текст
Скачать перевод
Посмотреть билингву
0.08/5
H- A Upgrade The H-IIA launch vehicle is the workhorse that has provided Japan with reliable, independent and guaranteed access to space since 2001. As the first step toward the National Flagship Launch System in the next generation, the H-IIA upgrade project aims at improving the vehicle’s geostationary transfer orbit (GTO) mission capabilities and payload environment conditions. This will enable Japan to promote R&D and utilization of space, as well as to enhance the international competitiveness of the H-IIA launch vehicle. A new challenge for the next stage The H-IIA upgrade project focuses on upper stage modifications to provide better services for customers. The development will be completed by 2013 to bring the vehicle to market as quickly as possible. 1 Long-coasting capability The coasting duration of the H-IIA upper stage will be enhanced from one hour to five hours by improving cross-cutting cryogenic propulsion technologies. This will enable to inject a spacecraft closer to geostationary orbit (GSO) than our current standard transfer orbit to extend the fuel life of satellites, while also extending limited launch windows for planetary exploration missions. 2 Improved payload environment The payload shock environment will be reduced from 4,100G to below 1,000G by a non-explosive clamp-band separation system. This allows sensitive equipments to be located closer to separation plane and problems with current pyrotechnic release devices will be mitigated. 3 Onboard Tracking System for Range Safety An onboard navigation sensor for range safety will be demonstrated that provides navigation data for range safety without tracking radar stations. This concept is intended to minimize the ground infrastructure and reduce cost of operation and maintenance. Upper stage Improved payload environment Low-shock clamp-band separation system, less than 1,000 G Onboard Tracking System for Range Safety Onboard Tracking System for Range Safety eliminates tracking radar stations Long-coasting capability White painted LH2 tank reduces propellant vaporization during long coasting Propellant settling system using vented GH2 Improved LOX chill-down operation of the upper stage Throttling of the upper stage engine, LE-5B-2 /Specifications H-IIA (current version) Launch capability, ton Long-coast GTO (Inclination: 20 deg, Perigee altitude: 3,000km; ΔV to GSO : 1,500 m/s) H-IIA upgrade H2A202 H2A204 H2A202 H2A204 − − 2.9 ton~ 4.6 ton~ 4.0 ton 6.0 ton 4.0 ton 6.0 ton Standard GTO (Inclination: 28.5 deg, Perigee altitude: 250km; V to GSO : 1,830 m/s) Payload Shock Environment (Maximum level) 1-6-5 100-8260 Tel.03-6266-6400 Fax.03-6266-6910 Japan Aerospace Exploration Agency Public Affairs Department Marunouchi Kitaguchi Bldg.3F,1-6-5 Marunouchi, Chiyoda-ku,Tokyo 100-8260,Japan Phone:+81-3-6266-6400 Fax:+81-3-6266-6910 4,100 G 1,000 G 3 JAXA Website http://www.jaxa.jp/ JAXA Mail Service http://www.jaxa.jp/pr/mail/ JSF111210T



Дата загрузки: 2017-09-25
Скачать документ
Скачать текст
0.08/5
H- A Upgrade The H-IIA launch vehicle is the workhorse that has provided Japan with reliable, independent and guaranteed access to space since 2001. As the first step toward the National Flagship Launch System in the next generation, the H-IIA upgrade project aims at improving the vehicle’s geostationary transfer orbit (GTO) mission capabilities and payload environment conditions. This will enable Japan to promote R&D and utilization of space, as well as to enhance the international competitiveness of the H-IIA launch vehicle. A new challenge for the next stage We will achieve more efficient launch vehicle operations by improving H-IIA launch capability and its global competitiveness, and simplifying the ground facility. 1 Long-coasting capability The coasting duration of the H-IIA upper stage will be enhanced from one hour to five hours by improving cross-cutting cryogenic propulsion technologies. This will enable to inject a spacecraft closer to geostationary orbit (GSO) than our current standard transfer orbit to extend the fuel life of satellites, while also extending limited launch windows for planetary exploration missions. 2 Improved payload environment The payload shock environment will be reduced from 4,100G to below 1,000G by a non-explosive clamp-band separation system. This allows sensitive equipments to be located closer to separation plane and problems with current pyrotechnic release devices will be mitigated. 3 Navigation sensor to minimize ground infrastructure An onboard navigation sensor for range safety will be demonstrated that provides navigation data for range safety without tracking radar stations. This concept is intended to minimize the ground infrastructure and reduce cost of operation and maintenance. Upper stage Improved payload environment Low-shock clamp-band separation system, less than 1,000 G Navigation sensor to minimize ground infrastructure Onboard Tracking System for Range Safety eliminates tracking radar stations Long-coasting capability White painted LH2 tank reduces propellant vaporization during long coasting Propellant settling system using vented GH2 Improved LOX chill-down operation of the upper stage Throttling of the upper stage engine, LE-5B-2 /Specifications H-IIA (current version) Launch capability, ton Long-coast GTO (Inclination: 20 deg, Perigee altitude: 2,700km; ΔV to GSO : 1,500 m/s) Standard GTO (Inclination: 28.5 deg, Perigee altitude: 250km; V to GSO : 1,830 m/s) Payload Shock Environment (Maximum level) as of October, 2015 4-6 101-8008 Tel.03-5289-3650Fax.03-3258-5051 Japan Aerospace Exploration Agency Public Affairs Department Ochanomizu sola city,4-6 Kandasurugadai, Chiyoda-ku Tokyo 101-8008,Japan Phone:+81-3-5289-3650Fax:+81-3-3258-5051 JSF1603 H-IIA upgrade H2A202 H2A204 H2A202 H2A204 − − 2.97 ton 4.82 ton 4.0 ton 6.0 ton − − 4,100 G 1,000 G Setting a mass of payload adaptor at about 100kg http://www.jaxa.jp/ JAXA Website English http://global.jaxa.jp/



Дата загрузки: 2016-12-06
Скачать документ
Скачать текст
0.07/5
... 9 [1] [3] [1] [1] [1] [3] [3] [3] GSLV Mk!! [2] [3] [3] [3] [3] [3] [3] [3] GSLV MkII(c) [2] [3] [3] [3] [3] [3] [3] [3] H2A202 [2] [3] [3] [3] [2] [3] [3] [3] H2A204 [3] [3] [3] [3] [3] [3] [3] [3] H2B [3] [3] [3] [3] [3] [3] [3] [3] Ariane 5 AtlasV DeltaIV Denpr...



Дата загрузки: 2017-04-08
Скачать документ
Скачать текст
0.11/5
... (changeable 2 or 3) ISP: 425s H2A202 H2A204 H2B Japan's Next Generation Launcher...



Дата загрузки: 2017-12-26
Скачать документ
Скачать текст
0.27/5
Fall Semester 2004 Part 8 No. 1 S·P·A·C·E TOURISM II TM Lecture Series given by Dr.-Ing. Robert Alexander Goehlich © 2003 by Robert A. Goehlich ようこそ スペース ツーリズム II レクチャー へ - Part 8: Present and Future Spaceports - General Contact Dr.-Ing. Robert Alexander GOEHLICH Mobile: +81-(0)90 1767 1667 Fax: +81-(0)45-566-1778 Email: mail@robert-goehlich.de Internet: www.robert-goehlich.de Ms. Akiko FUJIMOTO (Teaching Assistant) Mobile: +81-(0)80-5039-6222 Email: af07302002@yahoo.co.jp Mr. Kenji HASEGAWA (Webmaster) Mobile: n.a. Email: malayzaru@hotmail.com No. 2 Keio University Department of System Design Engineering Ohkami Laboratory (Space System Engineering) Office 14-609/14-620 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 JAPAN Content No. 3 ¾General ¾Guest Speaker: Mr. Iida, formerly Head of Kagoshima Space Center, now Advisor to the Executive Director of JAXA Note: The following slides were provided courtesy of Mr. Iida ¾Requests from Audience for Lectures No. 4 目 次 □宇宙機の現状 (今はまだ宇宙機=ロケット) □射場 (飛行場とは違う) □今後の見通し (スペースポートとは?) H2A標準型 衛星フェアリング 衛星 第2段液体水素タンク 第2段液体酸素タンク 第2段エンジン(LE-5B) 第1段液体酸素タンク 第1段液体水素タンク 固体ロケットブースタ (SRB-A) 第1段エンジン (LE-7A) 衛星フェアリング H2A主要諸元 第2段液体酸素タンク 第2段 第2段液体水素タンク 第2段エンジン No. 8 各 第1段 固体ロケットブースタ (SRB-A) 固体補助ロケット (SSB) 第2段 全長(m) 37.2 15.2 14.9 9.2 12 外径(m) 4.0 2.5 1 4.0 4.07 各段重量(t) 114 150(2本) 31 20 1.4 推力(t) 112 461 (2本) 152 (2本) 14 燃焼時間(S) 390 推進薬種類 ・液体酸素 ・液体水素 第1段液体酸素タンク 推進薬供給方式 第1段 第1段液体水素タンク 段 比推力(s) 姿勢制御 搭載電子装置 固体ロケット ブースタ (SRB-A) 固体補助ロケット (SSB) 第1段エンジン 100 プリブタジエン系コンポ ジェット固体推進薬 60 530 プリブタジエン系 コンポジェット固 体推進薬 ・液体酸素 ・液体水素 ターボポンプ ターボポンプ - - 440 280 282 ・ジンバル ・補助エンジン 可動ノズルによる ジンバル ・誘導制御系機器 ・テレメトリ送信 機 447 ・ジンバル ・ガスジェッ ト ・慣性誘導計 算機 ・テレメータ 送信装置 ・レーダトラ ンスポンダ ・指令破壊装 置 衛星 フェアリング H2Aファミリー 機体識別名称 静止トランスファ軌道 投入能力(ton) 打上げ予定の衛星例 H2A2024 H2A204 能力向上型 4.5 5.0 6.0 8.0 MTSAT-1R DRTS/USERS IGS ETS-VIII - H2A202 H2A2022 4.1 ADEOS-II スペースシャトル スペースシャトル主要諸元 全長 56.1 mオービタ翼幅 23.8 m ET+オービタ垂直尾翼上端までの高さ 23.9 m 打上げ時全重量 約 2,041 t (ペイロード含む) * ミッションにより前後する飛行高度 約 185~643 km ロケット追尾の地上局(静止・極軌道) SSO : Sun Synchronous Orbit HTV: H-ⅡA Transfer Vehicle GTO: Geo-stationary Transfer Orbit ロケット追尾の地上局 沖縄ダウンレンジ局 【機能】 ・ロケットテレメータの受信 増田局 【機能】 ・ロケットテレメータの受信 ・保安用コマンドの送信 ・精測レーダによるロケット追尾 宇宙ヶ丘局 【機能】 ・精測レーダによるロケット追尾 ・ロケットテレメータの受信 ・保安用コマンドの送信 60 ★ 50 40 第1光学観測局 内之浦 ★ 種子島 ★ 30 第3光学観測局 【機能】 ・ロケットの光学追尾 小笠原 ★ 沖縄 ★ 20 クリスマスダウンレンジ局 【機能】 ・ロケットテレメータの受信 10 緯度 [北緯,度] ★ ★ ★ ★ ★ 内之浦局(旧ISAS設備) 【機能】 ・ロケットテレメータの受信 ・精測レーダによるロケット追尾 (予定) 可搬型レーダ 【機能】 ・精測レーダによるロケット追尾 0 -10 -20 -30 -40 -50 -60 90 第1ダウンレンジ局 【機能】 ・ロケットテレメータの受信 ・保安用コマンドの送信 竹崎指令管制棟(RCC) 【機能】 ・射場管制 ・飛行安全管制 ・ロケットの光学追尾(第2光学) ・気象観測 第2ダウンレンジ局 【機能】 ・ロケットテレメータの受信 100 110 120 130 140 -70 第3ダウンレンジ局(グア ム) 【機能】 ・ロケットテレメータの受信 ・保安用コマンドの送信 経度 [東経,度] 150 160 170 180 サンチャゴダウンレンジ局 【機能】 ・ロケットテレメータの受信 小笠原ダウンレンジ局 【機能】 ・精測レーダによるロケット追尾 ・ロケットテレメータの受信 ・保安用コマンドの送信 種子島宇宙センター 至中種子町 第2衛星フェアリング組立棟 発電所 衛星組立棟 液体エンジン試験場 衛星フェアリング組立棟 大型ロケット発射場 中型ロケット発射場 至南種子町 島間港 光学観測所 3km 防災センター 海上監視レーダ塔 種子島灯台 事務本館 総合指令棟 ゲストハウス 固体ロケット試験場 至南種子町 小型ロケット発射場 宇宙科学技術館 観望台 ■総面積:約9㎞2(射点から半径3㎞以内の陸地面積) ■竹崎射場:小型ロケット発射場 ■大崎射場:中型ロケット発射場(N-Ⅰ/N-Ⅱ/H-Ⅰロケット) 大型ロケット発射場(H-Ⅱ/H-ⅡAロケット) ■射場系施設設備 ・総合指令棟(指令管制室、光学観測所、気象観測所、 飛行安全管制室) ・追跡所(レーダー、テレメトリ、コマンド) ・衛星/衛星フェアリング組立試験施設設備 ・液体エンジン/固体ロケット燃焼試験施設設備 ・発電所/上下水道/保安施設設備 ケネディ宇宙センター 名称 Kennedy Space Center その他の名称 John F. KennedSpaceCenter NASA Kennedy SpaceCenter NASA ケネディ宇宙センター ケネディ宇宙センター KSC 運営・管理機関 NASA / 米国 射場位置 米国 緯度28.5°経度-81°(マイナスは南緯/西経) ギアナ宇宙センター 名称 Guiana Space Center その他の名称 Kourou ギアナ宇宙センター クールー Centre Spatial Guyanais 運営・管理機関 Arianespace / フランス 所有機関 CNES / フランス 射場位置 仏領ギアナ 緯度5.2°経度-52.44°(マイナスは南緯/西経) 観光丸 スペースシップワン HOPE-X HTV 水平離着陸機構想(スペースプレーン) 空気吸い込み式エンジン ・飛行場のように・・・ ・安全性 ・宇宙機の信頼性 ・経済性 ・観光/宇宙開発 ・利便性 ・技術革新 (水平離陸・水平着陸) No. 25 Dr.-Ing. Robert Alexander GOEHLICH Keio University Department of System Design Engineering Space System Engineering (Ohkami Laboratory) 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522, JAPAN email: mail@robert-goehlich.de Mobile: +81-(0)90-1767-1667 Fax.: +81-(0)45-566-1778 Internet: http://www.robert-goehlich.de



Дата загрузки: 2017-09-24
Скачать документ
Скачать текст
Скачать перевод
Посмотреть билингву
0.37/5
... satellite demand for 5 years 120 H2A204* Arian5 ECA(dual)* 100 SeaLaunch...